Quantum Computation Based on Photons with Three Degrees of Freedom

Ming-Xing Luo 1, Hui-Ran Li 1, Hong Lai 2 & Xiaojun Wang 3

 $^{\rm 1}$ Information Security and National Computing Grid Laboratory,

Southwest Jiaotong University, Chengdu 610031, China,
² School of Computer and Information Science, Southwest University, Chongqing 400715, China,

³ School of Electronic Engineering, Dublin City University, Dublin 9, Ireland

April 13, 2016

In this supplementary information, for the simplicity denote two input systems as

$$|\phi\rangle_{A_{1}} = (\alpha_{11}|R\rangle + \alpha_{12}|L\rangle) \otimes (\beta_{11}|l_{1}I_{1}\rangle + \beta_{12}|l_{1}E_{1}\rangle + \beta_{13}|r_{1}I_{1}\rangle + \beta_{14}|r_{1}E_{1}\rangle)$$

$$:= \alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle$$

$$+\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle, \qquad (1)$$

$$|\phi\rangle_{A_{2}} = (\alpha_{21}|R\rangle + \alpha_{22}|L\rangle) \otimes (\beta_{21}|l_{2}I_{2}\rangle + \beta_{22}|l_{2}E_{2}\rangle + \beta_{23}|r_{2}I_{2}\rangle + \beta_{24}|r_{2}E_{2}\rangle)$$

$$:= \beta_{0}|R\rangle|l_{2}I_{2}\rangle + \beta_{1}|R\rangle|l_{2}E_{2}\rangle + \beta_{2}|R\rangle|r_{2}I_{2}\rangle + \beta_{3}|R\rangle|r_{2}E_{2}\rangle$$

$$+\beta_{4}|L\rangle|l_{2}I_{2}\rangle + \beta_{5}|L\rangle|l_{2}E_{2}\rangle + \beta_{6}|L\rangle|r_{2}I_{2}\rangle + \beta_{7}|L\rangle|r_{2}E_{2}\rangle. \qquad (2)$$

Appendix A. CNOT gate on the polarization DoFs of two photons

First, from the Figure 3(a), the photon A_1 evolves as follows

$$|\phi\rangle_{A_{1}}|+\rangle_{e_{1}} \xrightarrow{CPBS,NV_{1},CPBS} |\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)|+\rangle_{e_{1}}$$

$$+\alpha_{4}|L\rangle|l_{1}I_{1}\rangle|-\rangle_{e_{1}} + (\alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|+\rangle_{e_{1}}$$

$$\xrightarrow{CPBS,NV_{1},CPBS} |\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)|+\rangle_{e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle)|-\rangle_{e_{1}} + (\alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|+\rangle_{e_{1}}$$

$$\xrightarrow{CPBS,NV_{1},CPBS} |\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)|+\rangle_{e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)|+\rangle_{e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)|+\rangle_{e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|-\rangle_{e_{1}} := |\Phi_{1}\rangle_{A_{1}e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|-\rangle_{e_{1}} := |\Phi_{1}\rangle_{A_{1}e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|-\rangle_{e_{1}} := |\Phi_{1}\rangle_{A_{1}e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|-\rangle_{e_{1}} := |\Phi_{1}\rangle_{A_{1}e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|-\rangle_{e_{1}} := |\Phi_{1}\rangle_{A_{1}e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|-\rangle_{e_{1}} := |\Phi_{1}\rangle_{A_{1}e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|-\rangle_{e_{1}} := |\Phi_{1}\rangle_{A_{1}e_{1}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}$$

This is a controlled-Z gate($CZ_{pe}(A_1, e_1)$) on the polarization state of the photon A_1 and the NV center e_1 [the NV center e_1 as the target qubit], i.e.,

$$CZ_{pe} := |R\rangle\langle R| \otimes (|m^-\rangle\langle m^-| + |m^+\rangle\langle m^+|) + |L\rangle\langle L| \otimes (|m^-\rangle\langle m^-| - |m^+\rangle\langle m^+|)$$

And then, after a Hadamard transformation H^a being performed on the NV center e_1 , the photon A_2 evolves as follows

$$\begin{split} |\Phi_1\rangle_{A_1e_1}|\phi\rangle_{A_2} &\xrightarrow{\frac{H^P,CPBS,NV_1}{CPBS,H^P}} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ & + (\alpha_4|L\rangle|l_1I_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle + \alpha_7|L\rangle|r_1E_1\rangle)_{A_1}|m^+\rangle_{e_1} \\ & \otimes [X^P(\beta_0|L\rangle|l_2I_2\rangle + \beta_4|R\rangle|l_2I_2\rangle) + \beta_1|R\rangle|l_2E_2\rangle + \beta_2|R\rangle|r_2I_2\rangle \\ & + \beta_3|R\rangle|r_2E_2\rangle + \beta_5|L\rangle|l_2E_2\rangle + \beta_6|L\rangle|r_2I_2\rangle + \beta_7|L\rangle|r_2E_2\rangle]_{A_2} \\ &\xrightarrow{\frac{H^P,CPBS,NV_1}{CPBS,H^P}} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ & + (\alpha_4|L\rangle|l_1I_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle + \alpha_7|L\rangle|r_2E_2\rangle]_{A_2} \\ &\xrightarrow{\frac{H^P,CPBS,NV_1}{CPBS,H^P}} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_2I_2\rangle + \beta_7|L\rangle|r_2E_2\rangle]_{A_2} \\ &\xrightarrow{\frac{H^P,CPBS,NV_1}{CPBS,H^P}} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &\xrightarrow{\frac{H^P,CPBS,NV_1}{CPBS,H^P}} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &\xrightarrow{\frac{H^P,CPBS,NV_1}{CPBS,H^P}} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &\xrightarrow{H^P,CPBS,NV_1} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &\xrightarrow{H^P,CPBS,NV_1} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &\xrightarrow{H^P,CPBS,NV_1} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &\xrightarrow{H^P,CPBS,NV_1} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &+ (\alpha_4|L\rangle|l_1I_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle + \alpha_7|L\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &+ (\alpha_4|L\rangle|l_1I_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle + \alpha_7|L\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &+ (\alpha_4|L\rangle|l_1I_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle + \alpha_7|L\rangle|r_1E_1\rangle)_{A_1}|m^-\rangle_{e_1}|\phi\rangle_{A_2} \\ &+ (\alpha_4|L\rangle|l_1I_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle + \alpha_5|R\rangle|r_1I_1\rangle + \alpha_5|L\rangle|r_1I_1\rangle + \alpha$$

which may collapse into

$$(\alpha_0|R\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle)_{A_1}|\phi\rangle_{A_2} + (\alpha_4|L\rangle|l_1I_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle + \alpha_7|L\rangle|r_1E_1\rangle)_{A_1}(X^p|\phi\rangle_{A_2})$$

$$(4)$$

after measuring the NV center e_1 under the basis $\{|\pm\rangle\}$, where $X^p = |R\rangle\langle L| + |L\rangle\langle R|$ and $Z^p = |R\rangle\langle R| - |L\rangle\langle L|$ will be performed for the photon A_1 from each mode for the measurement outcome $|-\rangle_{e_1}$ of the NV center e_1 .

Appendix B. CNOT gate on the spatial DoFs $\{l, r\}$ of two photons

First, from the Figure 3(b), the photon A_1 from the spatial mode r_1I_1 passes through CPBS, NV_2 , X^p , NV_2 , X^p , CPBS, sequentially. In detail, the pulse from the spatial mode r_1I_1 is separated from CPBS in the left. Its reflected pulse passes through the NV-cavity NV_2 firstly. And then the transmitted pulse passes through waveplate X^p , NV-cavity NV_2 and another waveplate X^p , sequentially. Now, the pulse output from the NV-cavity NV_2 and the pulse output from X^p will be combined at another CPBS simultaneously. Similar operations will be performed for the spatial mode r_1E_1 . Generally, the photon A_1 and NV center e_2 will evolve as follows

$$|\phi\rangle_{A_{1}}|+\rangle_{e_{2}} \xrightarrow{\frac{CPBS,NV_{2},}{XP,NV_{2},XP,CPBS}} \frac{(\alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle)|-\rangle_{e_{2}} + (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle}{+\alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|+\rangle_{e_{2}}} + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}E_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|-\rangle_{e_{2}}} + \alpha_{1}|R\rangle|l_{1}I_{1}\rangle + \alpha_{2}|L\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)|-\rangle_{e_{2}}} + (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle)|+\rangle_{e_{2}}} := |\Psi_{1}\rangle_{A_{1}e_{2}}$$

$$(5)$$

This is a controlled-Z gate(CZ_{se}) on the spatial DoF $\{|l\rangle, |r\rangle\}$ of the photon A_1 and the NV center e_2 [the NV center e_2 as the target qubit], i.e.,

$$CZ_{pe} := |l\rangle\langle l| \otimes I(|m^{-}\rangle\langle m^{-}| + |m^{+}\rangle\langle m^{+}|) + |r\rangle\langle r| \otimes (|m^{-}\rangle\langle m^{-}| - |m^{+}\rangle\langle m^{+}|)$$

$$(6)$$

And then, after a H^a being performed on the NV center e_2 , the photon A_2 evolves as follows

$$\frac{|\Psi_{1}\rangle_{A_{1}e_{2}}|\phi\rangle_{A_{2}}}{|\operatorname{mode pairs}_{(l_{2}I_{2},r_{2}I_{2});(l_{2}E_{2},r_{2}E_{2})}} = \frac{|\Psi_{1}\rangle_{A_{1}e_{2}}|\phi\rangle_{A_{2}}}{|(\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle)_{A_{1}}|m^{-}\rangle_{e_{2}}} \\ = \frac{|\Psi_{1}\rangle_{A_{1}e_{2}}|\phi\rangle_{A_{2}}}{|\Psi_{1}\rangle_{A_{1}}|r_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{+}\rangle_{e_{2}}}{|\Psi_{1}\rangle_{A_{1}}|R\rangle|l_{2}I_{2}\rangle + \beta_{2}'|R\rangle|r_{2}I_{2}\rangle + \beta_{4}'|L\rangle|l_{2}I_{2}\rangle + \beta_{6}'|L\rangle|r_{2}I_{2}\rangle} \\ = \frac{|\Psi_{1}\rangle_{A_{1}e_{2}}|\phi\rangle_{A_{2}}}{|\Psi_{1}\rangle_{A_{1}}|R\rangle|l_{2}I_{2}\rangle + \beta_{2}'|R\rangle|r_{2}I_{2}\rangle + \beta_{4}'|L\rangle|l_{2}I_{2}\rangle + \beta_{6}'|L\rangle|r_{2}I_{2}\rangle}{|\Psi_{1}\rangle_{A_{1}}|R\rangle|l_{2}E_{2}\rangle + \beta_{3}'|R\rangle|r_{2}E_{2}\rangle + \beta_{4}'|L\rangle|l_{2}I_{2}\rangle + \beta_{6}'|L\rangle|r_{2}E_{2}\rangle)_{A_{2}}} \\ = \frac{|\Psi_{1}\rangle_{A_{1}e_{2}}|\phi\rangle_{A_{2}}}{|\Psi_{1}\rangle_{A_{1}}|R\rangle|l_{2}E_{2}\rangle + \beta_{3}'|R\rangle|r_{2}E_{2}\rangle + \beta_{4}'|L\rangle|l_{2}I_{2}\rangle + \beta_{6}'|L\rangle|r_{2}E_{2}\rangle)_{A_{2}}}{|\Psi_{1}\rangle_{A_{1}}|R\rangle|l_{2}E_{2}\rangle + \beta_{3}'|R\rangle|r_{2}E_{2}\rangle + \beta_{4}'|L\rangle|l_{2}E_{2}\rangle + \beta_{4}'|L\rangle|r_{2}E_{2}\rangle)_{A_{2}}} \\ = \frac{|\Psi_{1}\rangle_{A_{1}e_{2}}|\phi\rangle_{A_{2}}}{|\Psi_{1}\rangle_{A_{1}}|R\rangle|r_{2}E_{2}\rangle + \beta_{3}'|R\rangle|r_{2}E_{2}\rangle + \beta_{4}'|L\rangle|l_{2}E_{2}\rangle + \beta_{4}'|L\rangle|r_{2}E_{2}\rangle)_{A_{2}}}{|\Psi_{1}\rangle_{A_{1}}|R\rangle|r_{2}E_{2}\rangle + \beta_{3}'|R\rangle|r_{2}E_{2}\rangle + \beta_{4}'|L\rangle|r_{2}E_{2}\rangle + \beta_{4}'|L\rangle|r_{2}E_{2}\rangle)_{A_{2}}} \\ + \frac{|\Psi_{1}\rangle_{A_{1}e_{2}}|\Phi\rangle_{A_{1}e_{2}}|\Phi\rangle_{A_{1}e_{2}}|\Phi\rangle_{A_{1}e_{2}}|\Phi\rangle_{A_{1}e_{2}}|\Phi\rangle_{A_{2}}|\Phi\rangle_{A_{1}e_{2}}|$$

Figure S1| Schematic CNOT gate on the spatial DoFs $\{I, E\}$ of two photons. e_3 denotes an auxiliary NV center in the NV-cavity NV_3 . The subcircuit $CZ_{s_{IE}a}$ for the spatial modes l_1E_1 and r_1E_1 of the photon A_1 is similar to $CZ_{s_{rl}a}$ in the Figure 3(b). The subcircuit $C_{as_{IE}}$ for the spatial mode pairs (l_1I_1, l_1E_1) and (r_1I_1, r_1E_1) of the photon A_1 is similar to $CZ_{as_{rl}}$ in the Figure 3(b).

$$\frac{R^{CPBS,NV_2}_{NN_2,X^P,CPBS}}{\operatorname{mode } r_2E_2} \qquad (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_4|L\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle)A_1|m^-\rangle_{e_2} \\
\otimes (\beta_0'|R\rangle|l_2I_2\rangle + \beta_2'|R\rangle|r_2I_2\rangle + \beta_4'|L\rangle|l_2I_2\rangle + \beta_6'|L\rangle|r_2I_2\rangle \\
+ \beta_1'|R\rangle|l_2E_2\rangle + \beta_3'|R\rangle|r_2E_2\rangle + \beta_5'|L\rangle|l_2E_2\rangle + \beta_7'|L\rangle|r_2E_2\rangle)A_2 \\
+ (\alpha_2|R\rangle|r_1I_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle + \alpha_7|L\rangle|r_1E_1\rangle)A_1|m^+\rangle_{e_2} \\
\otimes [-(\beta_2'|R\rangle|r_2I_2\rangle + \beta_6'|L\rangle|r_2I_2\rangle + \beta_3'|R\rangle|r_2E_2\rangle + \beta_7'|L\rangle|r_2E_2\rangle) \\
+ \beta_0'|R\rangle|l_2I_2\rangle + \beta_4'|L\rangle|l_2I_2\rangle + \beta_1'|R\rangle|l_2E_2\rangle + \beta_5'|L\rangle|l_2E_2\rangle]A_2 \\
(\alpha_0|R\rangle|l_1I_1\rangle + \alpha_4|L\rangle|l_1I_1\rangle + \alpha_1|R\rangle|l_1E_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle)A_1|m^-\rangle_{e_2}|\phi\rangle_{A_2} \\
+ (\alpha_2|R\rangle|r_1I_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle + \alpha_7|L\rangle|r_1E_1\rangle)A_1|m^+\rangle_{e_2} \\
\otimes (\beta_0|R\rangle|r_2I_2\rangle + \beta_4|L\rangle|r_2I_2\rangle + \beta_1|R\rangle|r_2E_2\rangle + \beta_5|L\rangle|r_2E_2\rangle \\
+ \beta_2|R\rangle|l_2I_2\rangle + \beta_6|L\rangle|l_2I_2\rangle + \beta_3|R\rangle|l_2E_2\rangle + \beta_7|L\rangle|l_2E_2\rangle)A_2 \tag{7}$$

which may collapse into

$$(\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle)_{A_{1}}|\phi\rangle_{A_{2}} +(\alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}} \otimes(\beta_{0}|R\rangle|r_{2}I_{2}\rangle + \beta_{4}|L\rangle|r_{2}I_{2}\rangle + \beta_{1}|R\rangle|r_{2}E_{2}\rangle + \beta_{5}|L\rangle|r_{2}E_{2}\rangle +\beta_{2}|R\rangle|l_{2}I_{2}\rangle + \beta_{6}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|l_{2}E_{2}\rangle + \beta_{7}|L\rangle|l_{2}E_{2}\rangle)_{A_{2}}$$
(8)

after the measurement of the NV center e_2 under the basis $\{|\pm\rangle_{e_2}\}$, where Z^p will be performed for the photon A_1 from each mode r_1I_1 and r_1E_1 for the measurement outcome $|-\rangle_{e_2}$, $\beta'_0 = (\beta_0 + \beta_2)/\sqrt{2}$, $\beta'_2 = (\beta_0 - \beta_2)/\sqrt{2}$, $\beta'_4 = (\beta_4 + \beta_6)/\sqrt{2}$, $\beta'_6 = (\beta_4 - \beta_6)/\sqrt{2}$, $\beta'_1 = (\beta_1 + \beta_3)/\sqrt{2}$, $\beta'_3 = (\beta_1 - \beta_3)/\sqrt{2}$, $\beta'_5 = (\beta_5 + \beta_7)/\sqrt{2}$, and $\beta'_7 = (\beta_5 - \beta_7)/\sqrt{2}$.

Appendix C. CNOT gate on the spatial DoFs $\{I, E\}$ of two photons

From the Figure S1 in Supplementary Information and the Figure 3(b), a subcircuit $CZ_{s_{IE}a}$ is performed on the photon A_1 [from the spatial modes l_1E_1 and r_1E_1] and auxiliary NV center e_3 to

get

$$|\Psi_1'\rangle_{A_1e_3} := (\alpha_1|R\rangle|l_1E_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle + \alpha_7|L\rangle|r_1E_1\rangle)|-\rangle_{e_3} + (\alpha_2|R\rangle|r_1I_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle + \alpha_0|R\rangle|l_1I_1\rangle + \alpha_4|L\rangle|l_1I_1\rangle)|+\rangle_{e_3}$$
(9)

This is a controlled-Z gate(CZ_{se}) on the spatial DoF $\{|I\rangle, |E\rangle\}$ of the photon A_1 and the NV center e_3 [the NV center e_3 as the target qubit], i.e.,

$$CZ_{pe} := |I\rangle\langle I| \otimes (|m^-\rangle\langle m^-| + |m^+\rangle\langle m^+|) + |E\rangle\langle E| \otimes (|m^-\rangle\langle m^-| - |m^+\rangle\langle m^+|)$$
(10)

And then, after a Hadamard transformation H^a being performed on the NV center e_3 , the subcircuit $C_{as_{IE}}(e_3, A_2)$ is performed on the NV center e_3 and the photon A_2 .

$$|\Psi_{1}'\rangle_{A_{1}e_{3}}|\phi\rangle_{A_{2}} \xrightarrow{H^{a}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle)_{A_{1}}|m^{+}\rangle_{e_{3}}|\phi\rangle_{A_{2}} + (\alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{-}\rangle_{e_{3}} \otimes (\beta_{0}|R\rangle|l_{2}E_{2}\rangle + \beta_{4}|L\rangle|l_{2}E_{2}\rangle + \beta_{2}|R\rangle|r_{2}E_{2}\rangle + \beta_{6}|L\rangle|r_{2}E_{2}\rangle + \beta_{1}|R\rangle|l_{2}I_{2}\rangle + \beta_{5}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|r_{2}I_{2}\rangle + \beta_{7}|L\rangle|r_{2}I_{2}\rangle)_{A_{2}}$$

$$\xrightarrow{M^{\pm}_{e_{3}}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle)_{A_{1}}|\phi\rangle_{A_{2}} + (\alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{3}|R\rangle|r_{2}E_{2}\rangle + \beta_{6}|L\rangle|r_{2}E_{2}\rangle + \beta_{1}|R\rangle|l_{2}E_{2}\rangle + \beta_{4}|L\rangle|l_{2}E_{2}\rangle + \beta_{2}|R\rangle|r_{2}E_{2}\rangle + \beta_{6}|L\rangle|r_{2}E_{2}\rangle + \beta_{1}|R\rangle|l_{2}I_{2}\rangle + \beta_{5}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|r_{2}I_{2}\rangle + \beta_{7}|L\rangle|r_{2}I_{2}\rangle)_{A_{2}}$$

$$(11)$$

where $-I^P$ will be performed for the photon A_1 from each spatial mode l_1E_1 and r_1E_1 for the measurement outcome $|-\rangle_{e_3}$, $\beta_0 = (\beta_0 + \beta_1)/\sqrt{2}$, $\beta_1' = (\beta_0 - \beta_1)/\sqrt{2}$, $\beta_2' = (\beta_2 + \beta_3)/\sqrt{2}$, $\beta_3' = (\beta_2 - \beta_3)/\sqrt{2}$, $\beta_4' = (\beta_4 + \beta_5)/\sqrt{2}$, $\beta_5' = (\beta_4 - \beta_5)/\sqrt{2}$, $\beta_6' = (\beta_6 + \beta_7)/\sqrt{2}$, and $\beta_7' = (\beta_6 - \beta_7)/\sqrt{2}$.

Appendix D. Hybrid CNOT gate on the polarization DoF of the photon A_1 and the spatial DoF $\{l, r\}$ of the photon A_2

From the Figure 4(a) and the Figure 3(a), after the photon A_1 from each spatial mode passes through CPBS, NV_1 , CPBS, sequentially, the photon A_1 and the NV center e_1 will be changed into $|\Phi_1\rangle_{A_1e_1}$ as shown in the equation (3). And then, after a H^a being performed on the NV center e_1 , the subcircuit $C_{as_{lr}}(e_1, A_2)$ is performed on the NV center e_1 and the photon A_2 .

$$|\Phi_{1}\rangle_{A_{1}e_{1}}|\phi\rangle_{A_{2}} \xrightarrow{H^{a}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{-}\rangle_{e_{1}}|\phi\rangle_{A_{2}}$$

$$+(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{+}\rangle_{e_{1}}$$

$$\otimes(\beta_{0}|R\rangle|r_{2}I_{2}\rangle + \beta_{4}|L\rangle|r_{2}I_{2}\rangle + \beta_{1}|R\rangle|r_{2}E_{2}\rangle + \beta_{5}|L\rangle|r_{2}E_{2}\rangle$$

$$+\beta_{2}|R\rangle|l_{2}I_{2}\rangle + \beta_{6}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|l_{2}E_{2}\rangle + \beta_{7}|L\rangle|l_{2}E_{2}\rangle|_{A_{2}}$$

Figure S2| Schematic hybrid CNOT gate on the polarization DoF of the photon A_1 and the spatial DoF $\{I, E\}$ of the photon A_2 . e'_1 denotes an auxiliary NV center in the cavity NV'_1 .

which may collapse into

$$(\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)_{A_{1}}|\phi\rangle_{A_{2}} +(\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}} \otimes(\beta_{0}|R\rangle|r_{2}I_{2}\rangle + \beta_{4}|L\rangle|r_{2}I_{2}\rangle + \beta_{1}|R\rangle|r_{2}E_{2}\rangle + \beta_{5}|L\rangle|r_{2}E_{2}\rangle +\beta_{2}|R\rangle|l_{2}I_{2}\rangle + \beta_{6}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|l_{2}E_{2}\rangle + \beta_{7}|L\rangle|l_{2}E_{2}\rangle)_{A_{2}}$$

$$(12)$$

after the measurement of the NV center e_1 under the basis $\{|\pm\rangle_{e_1}\}$, where Z^p will be performed for the photon A_1 from each mode for the measurement outcome $|-\rangle_{e_1}$, $\beta'_0 = (\beta_0 + \beta_2)/\sqrt{2}$, $\beta'_2 = (\beta_0 - \beta_2)/\sqrt{2}$, $\beta'_1 = (\beta_1 + \beta_3)/\sqrt{2}$, $\beta'_3 = (\beta_1 - \beta_3)/\sqrt{2}$, $\beta'_4 = (\beta_4 + \beta_6)/\sqrt{2}$, $\beta'_6 = (\beta_4 - \beta_6)/\sqrt{2}$, $\beta'_5 = (\beta_5 + \beta_7)/\sqrt{2}$, and $\beta'_7 = (\beta_5 - \beta_7)/\sqrt{2}$.

Appendix E. Hybrid CNOT gate on polarization DoF of the photon A_1 and spatial DoF $\{I, E\}$ of the photon A_2

From the Figure S2 in Supplementary Information, after the photon A_1 from each spatial mode passes through CPBS, NV'_1 , CPBS, sequentially, the photon A_1 and the NV center e'_1 will be changed into $|\Phi_1\rangle_{A_1e'_1}$ as shown in the equation (3). And then, after a H^a being performed on the NV center e'_1 , the subcircuit $C_{as_{IE}}(e'_1, A_2)$ is performed on the NV center e'_1 and the photon A_2 .

$$|\Phi_{1}\rangle_{A_{1}e'_{1}}|\phi\rangle_{A_{2}} \xrightarrow{H^{a}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{-}\rangle_{e'_{1}}|\phi\rangle_{A_{2}} + (\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{+}\rangle_{e'_{1}} \otimes (\beta_{0}|R\rangle|l_{2}E_{2}\rangle + \beta_{4}|L\rangle|l_{2}E_{2}\rangle + \beta_{2}|R\rangle|r_{2}E_{2}\rangle + \beta_{6}|L\rangle|r_{2}E_{2}\rangle + \beta_{1}|R\rangle|l_{2}I_{2}\rangle + \beta_{5}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|r_{2}I_{2}\rangle + \beta_{7}|L\rangle|r_{2}I_{2}\rangle)_{A_{2}}$$

$$\xrightarrow{M^{\pm}_{e'_{1}}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)_{A_{1}}|\phi\rangle_{A_{2}} + (\alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}} \otimes (\beta_{0}|R\rangle|l_{2}E_{2}\rangle + \beta_{4}|L\rangle|l_{2}E_{2}\rangle + \beta_{2}|R\rangle|r_{2}E_{2}\rangle + \beta_{6}|L\rangle|r_{2}E_{2}\rangle + \beta_{1}|R\rangle|l_{2}I_{2}\rangle + \beta_{5}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|r_{2}I_{2}\rangle + \beta_{7}|L\rangle|r_{2}I_{2}\rangle)_{A_{2}}$$

$$(13)$$

where $M_{e_1'}^{\pm}$ denotes the measurement of the NV center e_1' under the basis $\{|\pm\rangle_{e_1'}\}$, and $-I^p=-|R\rangle\langle R|-|L\rangle\langle L|$ will be performed for the photon A_1 from each spatial mode $|l_1E_1\rangle$ and $|r_1E_1\rangle$ for

Figure S3| Schematic hybrid CNOT gate on the spatial DoF $\{I, E\}$ of the photon A_1 and the polarization DoF of the photon A_2 . e'_2 denotes an auxiliary NV center charged in the cavity NV'_2 .

the measurement outcome
$$|-\rangle_{e_1'}$$
. Here, $\beta_0' = (\beta_0 + \beta_1)/\sqrt{2}$, $\beta_1' = (\beta_0 - \beta_1)/\sqrt{2}$, $\beta_2' = (\beta_2 + \beta_3)/\sqrt{2}$, $\beta_3' = (\beta_2 - \beta_3)/\sqrt{2}$, $\beta_4' = (\beta_4 + \beta_5)/\sqrt{2}$, $\beta_5' = (\beta_4 - \beta_5)/\sqrt{2}$, $\beta_6' = (\beta_6 + \beta_7)/\sqrt{2}$, and $\beta_7' = (\beta_6 - \beta_7)/\sqrt{2}$.

Appendix F. Hybrid CNOT gate on the spatial DoF $\{l, r\}$ of the photon A_1 and the polarization DoF of the photon A_2

From the Figure 4(b) the photon A_1 from the spatial mode r_1I_1 passes through CPBS, NV_2 , X^p , NV_2 , X^p , CPBS, sequentially. Similar operations will be performed for the photon A_1 from the spatial mode r_1E_1 . After these operations, the photon A_1 and NV center e_1 are changed into $|\Psi_1\rangle$ as shown in the equation (5). After a H^a performed on the NV center e_1 , the photon A_2 from each mode will pass through H^p , CPBS, NV_2 , CPBS, H^p , sequentially to complete the subcircuit $C_{ap}(e_1, A_2)$. In detail,

$$|\Psi_{1}\rangle_{A_{1}e_{2}}|\phi\rangle_{A_{2}} \xrightarrow{H^{p}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle)_{A_{1}}|\phi\rangle_{A_{2}} + (\alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}} \\ \otimes (\beta_{4}|R\rangle|l_{2}I_{2}\rangle + \beta_{0}|L\rangle|l_{2}I_{2}\rangle + \beta_{2}|R\rangle|r_{2}I_{2}\rangle + \beta_{6}|L\rangle|r_{2}I_{2}\rangle + \beta_{5}|R\rangle|l_{2}E_{2}\rangle + \beta_{1}|L\rangle|l_{2}E_{2}\rangle + \beta_{3}|R\rangle|r_{2}E_{2}\rangle + \beta_{7}|L\rangle|r_{2}E_{2}\rangle)_{A_{2}}$$
(14)

after the measurement of the NV center e_2 under the basis $\{|\pm\rangle_{e_2}\}$, where $-I^p$ will be performed for the photon A_1 from each mode r_1I_1 and r_1E_1 for the measurement outcome $|-\rangle_{e_2}$.

Appendix G. Hybrid CNOT gate on the spatial DoF $\{I, E\}$ of the photon A_1 and the polarization DoF of the photon A_2

From the Figure S3 in Supplementary Information, the photon A_1 from the spatial mode l_1E_1 and r_1E_1 passes through CPBS, NV'_2 , X^p , NV'_2 , X^p , CPBS, sequentially. After these operations, the photon A_1 and NV center e'_2 are changed into $|\Psi_1\rangle$ as shown in the equation (9). After a H^a performed on the NV center e'_2 , the photon A_2 from each mode will pass through H^p , CPBS, NV'_2 ,

CPBS, H^p , sequentially. In detail,

$$\begin{split} |\Psi_1'\rangle_{A_1e_2'}|\phi\rangle_{A_2} & \xrightarrow{H^p} & (\alpha_0|R\rangle|l_1I_1\rangle + \alpha_4|L\rangle|l_1I_1\rangle + \alpha_2|R\rangle|r_1I_1\rangle + \alpha_6|L\rangle|r_1I_1\rangle)_{A_1}|m^-\rangle_{e_2'}|\phi\rangle_{A_2} \\ & + (\alpha_1|R\rangle|l_1E_1\rangle + \alpha_5|L\rangle|l_1E_1\rangle + \alpha_3|R\rangle|r_1E_1\rangle + \alpha_7|L\rangle|r_1E_1\rangle)_{A_1}|m^+\rangle_{e_2'} \\ & \otimes (\beta_4|R\rangle|l_2I_2\rangle + \beta_0|L\rangle|l_2I_2\rangle + \beta_2|R\rangle|r_2I_2\rangle + \beta_6|L\rangle|r_2I_2\rangle \\ & + \beta_5|R\rangle|l_2E_2\rangle + \beta_1|L\rangle|l_2E_2\rangle + \beta_7|R\rangle|r_2E_2\rangle + \beta_3|L\rangle|r_2E_2\rangle)_{A_2} \end{split}$$

which may collapse into

$$(\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle)_{A_{1}}|\phi\rangle_{A_{2}} +(\alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}} \otimes(\beta_{4}|R\rangle|l_{2}I_{2}\rangle + \beta_{0}|L\rangle|l_{2}I_{2}\rangle + \beta_{2}|R\rangle|r_{2}I_{2}\rangle + \beta_{6}|L\rangle|r_{2}I_{2}\rangle +\beta_{5}|R\rangle|l_{2}E_{2}\rangle + \beta_{1}|L\rangle|l_{2}E_{2}\rangle + \beta_{3}|R\rangle|r_{2}E_{2}\rangle + \beta_{7}|L\rangle|r_{2}E_{2}\rangle)_{A_{2}}$$

$$(15)$$

after measuring the NV center e'_2 under the basis $\{|\pm\rangle_{e'_2}\}$, where $-I^p$ will be performed for the photon A_1 from each mode l_1E_1 and r_1E_1 for the measurement outcome $|-\rangle_{e'_2}$.

Appendix H. Hybrid CNOT gate on the spatial DoF $\{l, r\}$ of the photon A_1 and the spatial DoF $\{I, E\}$ of the photon A_2

First, from the Figure 4(c) the photon A_1 from the spatial modes r_1I_1 and r_1E_1 pass through CPBS, NV_3 , X^p , NV_3 , X^p , CPBS, sequentially. After these operations, the photon A_1 and NV center e_3 are changed into $|\Psi_1\rangle$ as shown in the equation (5). After a Hadamard operation H^a performed on the NV center e_3 , the subcircuit $C_{as_{IE}}(e_3, A_2)$ is performed on the NV center e_3 and the photon A_2 .

$$|\Psi_{1}\rangle_{A_{1}e_{3}}|\phi\rangle_{A_{2}} \xrightarrow{H^{a}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle)_{A_{1}}|m^{-}\rangle_{e_{3}}|\phi\rangle_{A_{2}}$$

$$+(\alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{+}\rangle_{e_{3}}$$

$$\otimes(\beta_{0}|R\rangle|l_{2}E_{2}\rangle + \beta_{4}|L\rangle|l_{2}E_{2}\rangle + \beta_{2}|R\rangle|r_{2}E_{2}\rangle + \beta_{6}|L\rangle|r_{2}E_{2}\rangle$$

$$+\beta_{1}|R\rangle|l_{2}I_{2}\rangle + \beta_{5}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|r_{2}I_{2}\rangle + \beta_{7}|L\rangle|r_{2}I_{2}\rangle)_{A_{2}}$$

$$\xrightarrow{M^{\pm}_{e_{3}}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle)_{A_{1}}|\phi\rangle_{A_{2}}$$

$$+(\alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}$$

$$\otimes(\beta_{0}|R\rangle|l_{2}E_{2}\rangle + \beta_{4}|L\rangle|l_{2}E_{2}\rangle + \beta_{2}|R\rangle|r_{2}E_{2}\rangle + \beta_{6}|L\rangle|r_{2}E_{2}\rangle$$

$$+\beta_{1}|R\rangle|l_{2}I_{2}\rangle + \beta_{5}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|r_{2}I_{2}\rangle + \beta_{7}|L\rangle|r_{2}I_{2}\rangle)_{A_{2}} (16)$$

where two phase flips $-I^p$ s will be performed for the photon A_1 from the spatial modes l_1E_1 and r_1E_1 for the measurement outcome $|-\rangle_{e_3}$, $\beta_0' = (\beta_0 + \beta_1)/\sqrt{2}$, $\beta_1' = (\beta_0 - \beta_1)/\sqrt{2}$, $\beta_2' = (\beta_2 + \beta_3)/\sqrt{2}$, $\beta_3' = (\beta_2 - \beta_3)/\sqrt{2}$, $\beta_4' = (\beta_4 + \beta_5)/\sqrt{2}$, $\beta_5' = (\beta_4 - \beta_5)/\sqrt{2}$, $\beta_6' = (\beta_6 + \beta_7)/\sqrt{2}$, and $\beta_7' = (\beta_6 - \beta_7)/\sqrt{2}$.

Figure S4 Schematic hybrid CNOT gate on the spatial DoF $\{I, E\}$ of the photon A_1 and the spatial DoF $\{l, r\}$ of the photon A_2 . e_3' denotes an auxiliary NV center charged in the cavity NV_3' .

Appendix I. Hybrid CNOT gate on the spatial DoF $\{I, E\}$ of the photon A_1 and the spatial DoF $\{l, r\}$ of the photon A_2

From the Figure S4 in Supplementary Information, the photon A_1 from the spatial modes l_1E_1 and r_1E_1 pass through CPBS, NV_3' , X^p , NV_3' , X^p , CPBS, sequentially. After these operations, the photon A_1 and NV center e_3' are changed into $|\Psi_1'\rangle$ as shown in the equation (9). After a H^a performed on the NV center e_3' , the subcircuit $C_{as_{lr}}(e_3', A_2)$ is performed on the photon A_2 and the NV center e_3' .

$$|\Psi'_{1}\rangle_{A_{1}e'_{3}}|\phi\rangle_{A_{2}} \xrightarrow{H^{a}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle)_{A_{1}}|m^{-}\rangle_{e'_{3}}|\phi\rangle_{A_{2}} + (\alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{+}\rangle_{e'_{3}} \otimes (\beta_{0}|R\rangle|r_{2}I_{2}\rangle + \beta_{1}|R\rangle|r_{2}E_{2}\rangle + \beta_{4}|L\rangle|r_{2}I_{2}\rangle + \beta_{5}|L\rangle|r_{2}E_{2}\rangle + \beta_{2}|R\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|l_{2}E_{2}\rangle + \beta_{6}|L\rangle|l_{2}I_{2}\rangle + \beta_{7}|L\rangle|l_{2}E_{2}\rangle)_{A_{2}}$$

$$(17)$$

which may collapse into

$$(\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle)_{A_{1}}|\phi\rangle_{A_{2}}$$

$$+(\alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}$$

$$\otimes(\beta_{0}|R\rangle|r_{2}I_{2}\rangle + \beta_{4}|L\rangle|r_{2}I_{2}\rangle + \beta_{1}|R\rangle|r_{2}E_{2}\rangle + \beta_{5}|L\rangle|r_{2}E_{2}\rangle$$

$$+\beta_{2}|R\rangle|l_{2}I_{2}\rangle + \beta_{6}|L\rangle|l_{2}I_{2}\rangle + \beta_{3}|R\rangle|l_{2}E_{2}\rangle + \beta_{7}|L\rangle|l_{2}E_{2}\rangle)_{A_{2}}$$

$$(18)$$

after the measurement of the NV center e_3' under the basis $\{|\pm\rangle_{e_3'}\}$, where Z^p will be performed for the photon A_1 from each mode r_1I_1 and r_1E_1 for the measurement outcome $|-\rangle_{e_3'}$, $\beta_0' = (\beta_0 + \beta_2)/\sqrt{2}$, $\beta_2' = (\beta_0 - \beta_2)/\sqrt{2}$, $\beta_1' = (\beta_1 + \beta_3)/\sqrt{2}$, $\beta_3' = (\beta_1 - \beta_3)/\sqrt{2}$, $\beta_4' = (\beta_4 + \beta_6)/\sqrt{2}$, $\beta_6' = (\beta_4 - \beta_6)/\sqrt{2}$, $\beta_5' = (\beta_5 + \beta_7)/\sqrt{2}$, and $\beta_7' = (\beta_5 - \beta_7)/\sqrt{2}$.

Appendix J. Hybrid CNOT gate on the polarization DoF and the spatial DoF $\{l, r\}$ of one photon

From the Figure 5, after the photon A_1 from each spatial mode passes through CPBS, NV_1 , CPBS, sequentially, the photon A_1 and NV center e_1 will be changed into $|\Phi_1\rangle_{A_1e_1}$ as shown in the equation

Figure S5| Schematic CNOT gate on the polarization DoF and the spatial DoF $\{I, E\}$ of the photon A_1 . e'_1 denotes an auxiliary NV center charged in the cavity NV'_1 .

(3). And then, after a H^a performed on the NV center e_1 , the subcircuit $C_{as_{lr}}(e_1, A_1)$ is performed on the NV center e_1 and photon A_1 .

$$|\Phi_{1}\rangle_{A_{1}e_{1}} \xrightarrow{H^{a}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{-}\rangle_{e_{1}} + (\alpha_{6}|L\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|r_{1}I_{1}\rangle + \alpha_{7}|L\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{+}\rangle_{e_{1}}$$

which may collapse into

$$\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{4}|L\rangle|r_{1}I_{1}\rangle + \alpha_{5}|L\rangle|r_{1}E_{1}\rangle + \alpha_{6}|L\rangle|l_{1}I_{1}\rangle + \alpha_{7}|L\rangle|l_{1}E_{1}\rangle$$
(19)

after the measurement of the NV center e_1 under the basis $\{|\pm\rangle_{e_1}\}$, where Z^p will be performed for the photon A_1 from each mode for the measurement outcome $|-\rangle_{e_1}$, $\alpha'_0 = (\alpha_0 + \alpha_2)/\sqrt{2}$, $\alpha'_2 = (\alpha_0 - \alpha_2)/\sqrt{2}$, $\alpha'_1 = (\alpha_1 + \alpha_3)/\sqrt{2}$, $\alpha'_3 = (\alpha_1 - \alpha_3)/\sqrt{2}$, $\beta'_4 = (\alpha_4 + \alpha_6)/\sqrt{2}$, $\alpha'_6 = (\alpha_4 - \alpha_6)/\sqrt{2}$, $\alpha'_5 = (\alpha_5 + \alpha_7)/\sqrt{2}$, and $\alpha'_7 = (\alpha_5 - \alpha_7)/\sqrt{2}$.

Appendix K. Hybrid CNOT gate on the polarization DoF and the spatial DoF $\{I, E\}$ of one photon

From the Figure S5 in Supplementary Information, after the photon A_1 from each spatial mode passes through CPBS, NV'_1 , CPBS, sequentially, the photon A_1 and NV center e'_1 will be changed into $|\Phi_1\rangle_{A_1e'_1}$ as shown in the equation (3). And then, after a H^a performed on the NV center e'_1 , the subcircuit $C_{as_{IE}}(e_1, A_1)$ is performed on the NV center e'_1 and the photon A_1 .

$$|\Phi_{1}\rangle_{A_{1}e'_{1}} \xrightarrow{H^{a}} (\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{-}\rangle_{e'_{1}} + (\alpha_{5}|L\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}E_{1}\rangle)_{A_{1}}|m^{+}\rangle_{e'_{1}}(20)$$

which may collapse into

$$\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha_{4}|L\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|l_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}I_{1}\rangle$$
(21)

after the measurement of the NV center e'_1 under the basis $\{|\pm\rangle_{e'_1}\}$, where Z^p will be performed for the photon A_1 from each mode for the measurement outcome $|-\rangle_{e'_1}$, $\alpha'_0 = (\alpha_0 + \alpha_1)/\sqrt{2}$,

Figure S6 Hybrid CNOT gate on two spatial DoFs of the photon A_1 (a) Schematic hybrid CNOT gate on the spatial DoF $\{l, r\}$ and the spatial DoF $\{l, E\}$ of the photon A_1 . (b) Schematic CNOT gate on the spatial DoF $\{l, E\}$ and the spatial DoF $\{l, r\}$ of the photon A_1 .

$$\alpha'_1 = (\alpha_0 - \alpha_1)/\sqrt{2}, \ \alpha'_2 = (\alpha_2 + \alpha_3)/\sqrt{2}, \ \alpha'_3 = (\alpha_2 - \alpha_3)/\sqrt{2}, \ \beta'_4 = (\alpha_4 + \alpha_5)/\sqrt{2}, \ \alpha'_5 = (\alpha_4 - \alpha_5)/\sqrt{2}, \ \alpha'_6 = (\alpha_6 + \alpha_7)/\sqrt{2}, \ \text{and} \ \alpha'_7 = (\alpha_6 - \alpha_7)/\sqrt{2}.$$

Appendix L. CNOT gate on two spatial DoFs of one photon

Figure S6(a) presents a schematic hybrid CNOT gate on the spatial DoF $\{l, r\}$ and the spatial DoF $\{I, E\}$ of the photon A_1 . Here, the photon A_1 from the spatial modes r_1I_1 and r_1E_1 pass through CBS, -I, CBS, sequentially. The photon A_1 evolves as follows

$$|\phi_{1}\rangle_{A_{1}} \xrightarrow{CBS} \alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle$$

$$+\alpha'_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha'_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha'_{6}|L\rangle|r_{1}I_{1}\rangle + \alpha'_{7}|L\rangle|r_{1}E_{1}\rangle$$

$$+\alpha'_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle$$

$$+\alpha'_{2}|R\rangle|r_{1}I_{1}\rangle - \alpha'_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha'_{6}|L\rangle|r_{1}I_{1}\rangle - \alpha'_{7}|L\rangle|r_{1}E_{1}\rangle$$

$$+\alpha'_{2}|R\rangle|r_{1}I_{1}\rangle - \alpha'_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha'_{6}|L\rangle|r_{1}I_{1}\rangle - \alpha'_{7}|L\rangle|r_{1}E_{1}\rangle$$

$$+\alpha_{3}|R\rangle|r_{1}I_{1}\rangle + \alpha_{1}|R\rangle|r_{1}E_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{5}|L\rangle|l_{1}E_{1}\rangle$$

$$+\alpha_{3}|R\rangle|r_{1}I_{1}\rangle + \alpha_{2}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}E_{1}\rangle$$
(22)

where
$$\alpha_2' = (\alpha_2 + \alpha_3)/\sqrt{2}$$
, $\alpha_3' = (\alpha_2 - \alpha_3)/\sqrt{2}$, $\alpha_6' = (\alpha_6 + \alpha_7)/\sqrt{2}$, and $\alpha_7' = (\alpha_6 - \alpha_7)/\sqrt{2}$.

Figure S6(b) presents a schematic hybrid CNOT gate on the spatial DoF $\{I, E\}$ and the spatial DoF $\{l, r\}$ of the photon A_1 . Here, the photon A_1 from the spatial modes l_1E_1 and r_1E_1 pass through CBS, -I, CBS, sequentially. The photon A_1 evolves as follows

$$|\phi_{1}\rangle_{A_{1}} \xrightarrow{CBS} \alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle$$

$$+\alpha'_{1}|R\rangle|l_{1}E_{1}\rangle + \alpha'_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha'_{5}|L\rangle|l_{1}E_{1}\rangle + \alpha'_{7}|L\rangle|r_{1}E_{1}\rangle$$

$$\frac{-I}{\text{mode } r_{1}E_{1}} \alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle$$

$$+\alpha'_{1}|R\rangle|l_{1}E_{1}\rangle - \alpha'_{3}|R\rangle|r_{1}E_{1}\rangle + \alpha'_{5}|L\rangle|l_{1}E_{1}\rangle - \alpha'_{7}|L\rangle|r_{1}E_{1}\rangle$$

$$\alpha_{0}|R\rangle|l_{1}I_{1}\rangle + \alpha_{4}|L\rangle|l_{1}I_{1}\rangle + \alpha_{2}|R\rangle|r_{1}I_{1}\rangle + \alpha_{6}|L\rangle|r_{1}I_{1}\rangle$$

$$+\alpha_{3}|R\rangle|l_{1}E_{1}\rangle + \alpha_{1}|R\rangle|r_{1}E_{1}\rangle + \alpha_{7}|L\rangle|l_{1}E_{1}\rangle + \alpha_{5}|L\rangle|r_{1}E_{1}\rangle (23)$$

where $\alpha_1' = (\alpha_1 + \alpha_3)/\sqrt{2}$, $\alpha_3' = (\alpha_1 - \alpha_3)/\sqrt{2}$, $\alpha_5' = (\alpha_5 + \alpha_7)/\sqrt{2}$, and $\alpha_7' = (\alpha_5 - \alpha_7)/\sqrt{2}$.